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A method is described which allows to approximate with a few parameters 
the Coulomb and exchange integrals employed in valence-electron-only SCF 
calculations. The necessary parameters for atoms from Li to Ar are given. 
Very good transferability from atomic to molecular systems and near coin- 
cidence with all-electron calculations are found for LiH, HF and HC1 
molecules. Extension to other atoms is in progress. 
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1. Introduction 

In calculating molecular wavefunctions it is often necessary, in order to avoid 
prohibitive calculations, to take into account separately valence and core parts. 
The latter can be regarded, with a good approximation, as invariant against the 
variation of geometrical parameters and can be replaced by suitable effective 
potentials which ought to possess a good degree of transferability. This kind of 
approach, which dates back to the beginning of Quantum Chemistry [1-3], has 
been refined by the introduction of the pseudopotential of Phillips-Kleinman [4] 
and its generalizations [5], and later on by several authors [6-18] to the point 
at which it can give nearly the same accuracy, in predicting molecular properties 
of valence electrons, as all-electron calculations. 

The equations which the valence orbitals must fulfil in this scheme lead to an 
operator,  of which they must be eigenfunctions, which can be written in the 
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where B~ are optimized parameters, come out to be very similar to those which 
could be obtained by a complete self consistent calculation. 

Starting from an approximate operator of this kind, it remains only to calculate 
the matrix elements of Gc, this operator would contain, if evaluated in detail 
also in a frozen core approximation, a large number of two-electron terms for 
the valence-core interaction. For this reason, approximate potentials Uc(r), such 
that the integrals (r I Uc 1r are as close as possible to the exact values (r I Gcl ~),  
have been introduced by several authors [8-16]. It is however clear that such a 
condition cannot be fulfilled for all functions r since the exchange operator is 
not simply multiplicative. Dixon et al. [14, 15] carried out an accurate investiga- 
tion on the calculation of the matrix elements generated by Coulomb and 
exchange core operators. They get the matrix elements relative to Coulomb 
potentials from atomic charge densities approximated by a sum over 1 s Gaussian 
functions. For what concerns the exchange operators, their kernels have been 
approximated, with the aim of keeping the non-local character, by a combination 
of projection operators. While many authors adopt local [12, 13, 16] or semi-local 
[9, 10] operators to represent the effects of core on the valence electrons, we 
agree with the philosophy of Dixon's non-local method but propose some different 
kind of approximations for Coulomb and exchange operators. 

Recently a method has been proposed for obtaining an approximate representa- 
tion of the exchange operator [19]. This method is simple and reliable and it 
therefore seems appropriate to use it, along with a new kind of approximation 
for the Coulomb potential, to get both the Coulomb and exchange parts of the 
operator G~. The following sections contain a description (2) of the approximation 
employed for the representation of the Coulomb operators along with the 

Phillips-Kleinman form: 

C o r e  

F = h + G c + G v +  Y~ (e~-ei)Pi (1) 
i 

where h is the one-electron Hamiltonian, Gc and Gv include the Coulomb and 
exchange operators generated respectively by the core and valence electrons. 
The last term in (1), where Pi = I~)(~1, is properly called the Phillips-Kleinman 
pseudopotential and is related to the condition of orthogonality between valence 
and core orbitals. In fact the valence pseudoorbitals ~ are allowed to overlap 
the core and the terms P~ prevent their collapsing into the core. It should be 
noticed that these terms would disappear in a natural way if the variation of the 
valence orbitals were orthogonal to the core orbitals. In this case also the operators 
which appear in G~ could be rigorously constructed starting only from the basis 
functions used. 

From the work of Huzinaga et al. [16, 17] it appears that the valence orbitals 
arising from an operator as 

C o r e  

F = h + G c + G ~ +  ~ B~PI (2) 
i 
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parameters necessary for the atoms from Litium to Argon; (3) an analogous 
description for the exchange operators and (4) some results obtained with these 
approximations in atomic and molecular calculations. 

2. The Coulomb operator approximation 

Gaussian type basis functions are among the most commonly used.in Quantum 
Chemistry calculations, and among these the modified form of Golebiewsky and 
Mrozek [20] offers several practical advantages. In the present work we use this 
kind of function, but similar considerations Could apply to other forms of Gaussian 
basis sets. 

Let  us consider an atom having K and L core shells and the orbitals expanded 
on a basis {X} of modified Gaussians, with ns s-type functions and np p-type; 
then the core Coulomb operator  is 

Jc(rO = Jls(rl) + Jas(rO +J2p(rl) 

f l s * ( r ) l s ( r ) f 2 s * ( r ) 2 s ( r ) I 2 P * ~ ( r ) 2 p ~ ( r ) d r  
- I r l - r l  dr+ Ir,-r] dr+ Ir,-rl 

+ 1 2p*(r)2py(r)Irl - rl dr+ 1 2p*(r)2pz(r)lr,-rl dr 

os I = 2  (Ci, a~ej, l~+Ci2sej2s) x*(r)xj(r) 
ij ' ' ] r l - r ]  dr 

[I x*x  I % Xk (r)xl (r) X~*(r)xY(r) 
~, Ck,2pCl,2p dr+ dr 
k, Ir l -  rl Ir l -  rl 

xk (r)x~ (r) 
+ I r l - r l  d r  . (3) 

Remembering from [20] that 

out+oi+wi 
X, = g(u,, v,, w,, a,, Ri) --OXU, c3 Y~, OZ w,S(a'' R,) (4) 

where 

S(ai, Ri) = g( O, O, O, ai, Ri) = exp [-ai( r -  Ri) 2] 

and making use of the relationship 

1 
= 1 f e x p [ i k . ( r l - r ) ] f  exp(-tk2) dkdt (5) [rl-r I 21r 2 

we easily obtain the integrals 

t l  s (rl,/a, 
Jl~(r0 + J2s(rl) -- ~ (C,.I~Ci.1 ~ + Ci.2sCj.2~)Sq erf (6) 

+ a j) 

i,j rl 
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k,1  ' " r l  

(7) 

Guided by these results we have approximated the total Coulomb operator for 
the core electrons of the/~ and L shells of an atom centered on Rc by a sum of 
terms of the type 

M~ erf(aslr-Rc[)  M~ 
2Jc(Ir-Rcl) = Y~ cs ~- ~ ds e x p [ - b s ( r - R c )  2] (8) Ir-Rcl S S 

in which, and for each atom, 2(Mr+Mx) parameters have been optimized. 

We have found that choosing Mr = 1, Mx = 1 for K shells (atoms Li through Ne) 
and Mr = 2, Mx = 1 for K and L shells together (atoms Na through Ar) gives a 
very good approximation to Jc- In Table I are reported the values of the optimized 
parameters for the atoms of the second and third row of the periodic table. In 
Figs. 1 and 2 the plots of 2J~(r) given by our approximation (8) are compared 
with those calculated using accurate SCF core orbitals, for Li, N, Ne, Mg, Si and 
C1 atoms. In all these cases (and in the others not reported here) the representation 
is remarkably accurate. 

Our choice of the expression (8) to approximate J~ does not imply, as regards 
the erf terms, the need of new formulae for the subsequent integrations, because 
they lead again to the expressions given by Golebiewsky [20] for electronic 
repulsion integrals. Concerning the second term of (8), the calculation of the 
integrals over valence orbitals is also very simple. Thus, remembering (4), we 
let s(a, RA) and s(b, RB) be two s-type basis functions and write s(c, R~) for 

Table 1. Parameters to fit Coulomb potentials 2Jc by (8) for atoms from Li to A r  

Atom c 1 a 1 c 2 a 2 d 1 bl 

Li 2 2 .379 - -  - -  - 0 . 2 9 2  

Be 2 3 .263 - -  - -  - 0 . 3 9 7  

B 2 4 .142  - -  - -  - 0 . 5 0 8  

C 2 5 .020 - -  - -  - 0 . 6 2 5  

N 2 5 .896  - -  - -  - 0 . 7 5 0  

O 2 6 .773  - -  - -  - 0 . 8 8 0  

F 2 7 .648 - -  - -  - 1 . 0 2 0  

Ne 2 8 .524 - -  - -  - 1 . 1 7 0  

Na 2 9 .400 8 2 .105 - 6 . 0 7 5  

Mg 2 10.278 8 2 .413 - 7 . 0 0 0  

A1 2 11 .157 8 2 .722  - 7 . 9 3 3  

Si 2 12 .036 8 3 .019  - 8 . 8 2 6  

P 2 12 .915 8 3 .337 - 9 . 7 9 0  

S 2 13.795 8 3.361 - 10.676 

C1 2 14 .675 8 3 .922 - 1 1 . 5 5 5  

A r  2 15 .556  8 4 .227  - 1 2 . 4 8 0  

1.304 

2 .535 

4 .170  

6 .300  

8.953 

12.088 

15 .924  

20 .472  

3 .280  

4 .406  

5.701 

7 .082  

8 .742 

10.401 
12.188 

14.222 
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Fig. 1. Plots of 2Jc(r) for Li, N and Ne atoms: (a) - -  
(b) - - -  calculated by approximating formula (8) 
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Fig. 2. Plots of 2Jc(r) for Mg, Si and CI atoms: (a) - -  
(b) - - -  calculated by approximating formula (8) 
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one of the Gaussian terms of (8), then: 

I (0 ,  O, O, a; O, O, O, b; c; RA; RB; Re) 

= NANB I exp [--a(r -- RA) 2 -- c(r -- Re) 2 - b(r - RB) 2] dr 

4ab 3/4 

= L(a +~-~ c)2] 
x exp { - [ a b ( R A -  Rl~):z+ aC(RA --R~)2+ bc(RB -Rc )2 ] / (a  + b + c)} (9) 
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while the matrix element for any pair of functions becomes 

I(UA, "l.)A, WA, a; UB, VS, WB, b; c; RA; RB; Rc) 
OUA +OA A-WA +UB-t-~B-I-WB 

= N A NB bl a 12 A W A tAB V B W B 
OX A O Y A O Z  A OX B OYB OZn 

x I(0, O, O, a; O, O, O, b; c; RA; RB; Re) (10) 

where NA = [a "a+vA+wA (2uA + 1)!!(2VA + 1)!!(2Wa + 1)!!]-1/2. The expression (9) 
comes out to be very similar to that for an overlap integral and can be programmed 
in an analogous manner. 

3. The exchange operator approximation 

The exchange integral between the core of an atom and two generic functions f 
and g is computed by the formula 

N 
(flKclg) = ~ [n~176176 + HbfX(ti)gl(tj)] (11) 

where the first term in the summation represents the contribution of the spherical 
part, while the second term comes out from the p part. If both f and g are 
centered on Re, like the K~ operator, the two terms are reduced to only one: 
the first if both the functions are s-type, the second if they are Px, Py or pz-type. 
We define f0 and f l  as follows; 

~ 6 
f ~  = 2 f ( P i l )  (12) l=l 

p. being the six points where a sphere, centered on R~ and with radius r~ meets 
the three coordinate axis coming out from Rc, and 

fl(ri) = E (--1)If(pit) ( 1 3 )  
/=1 

for which the supplementary condition holds that Pi.1 and Pi.2 are on the x-axis 

Table 2. Parameters to fit exchange integrals by ( i1 )  for atoms Li through Ne (Hii = H/i) 

Li Be B C N O F Ne 

r 1 0.473696 0.343544 0.270020 0.222567 0.189352 0.164752 0.145827 
R 2 1.485335 1.077228 0.846684 0.697886 0.593739 0.516601 0.457258 
H~I 3.174117 1.669513 1.031376 0.700719 0.507184 0.383959 0.300814 
H~2 1.255917 0.660584 0.408089 0.277257 0.200680 0.151923 0.119024 
H~z 1.012273 0.532433 0.328921 0.223470 0.161749 0.122450 0.095934 
tl 0.569190 0.413193 0.323640 0.266782 0.226927 0.197242 0.174514 

1.784770 1.295621 1.014815 0.836528 0.711558 0.618479 0.547211 
H~I 0.332389 0.175161 0.107462 0.073020 0.052833 0.039915 0.031246 
H~2 0.094024 0.049548 0.030398 0.020655 0.014945 0.011291 0.008839 
H~2 0.124301 0.065504 0.040187 0.027307 0.019757 0.014927 0.011685 

0.130811 
0.410174 
0.242054 
0.095774 
0.077194 
0.156490 
0.490695 
0.025125 
0.007107 
0.009396 
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Table 3. Parameters to fit exchange integrals by (11) for atoms Na through Ar (Hi1 =/4jl) 
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Na Mg A1 Si P S C1 Ar 

K shell 

r I 0.261067 0.237044 0.217080 0.200208 0.188641 0.173255 0.162319 0.152683 
H~I 0.685179 0.564881 0.473740 0.402961 0.357743 0.301766 0.264875 0.234358 
t I 0.211496 0.194245 0.178040 0.164155 0.154029 0.141898 0.133002 0.125032 
H~I 0.029979 0.025288 0.021244 0.018060 0.015901 0.013495 0.011856 0.010477 

L shell 

r 1 0.620605 0.562882 0.513740 0.471311 0.441042 0.403593 0.376351 0.352503 
1.631869 1.480088 1.350870 1.239303 1.159702 1.061239 0.989607 0.926899 

H~I 5.967799 4.909290 4.089501 3.441902 3.013997 2.523886 2.194667 1.925344 
H~2 2.522695 2.075245 1.728705 1.454953 1.274071 1.066892 0.927725 0.813877 
H~2 2.269572 1.867018 1.555250 1.308966 1.146233 0.959842 0.834639 0.732214 
t 1 0.691664 0.608182 0.530033 0.477851 0.434584 0.392235 0.362037 0.334850 

1.818717 1.599203 1.393710 1.256500 1.142731 1.031373 0.951969 0.880483 
H~I 3.366246 2.602693 1.976791 1.606721 1.328935 1.082549 0.922276 0.788965 
H~2 1.449811 1.120956 0.851386 0.692000 0.572360 0.466244 0.397216 0.339800 
H~2 1.268503 0.980774 0.744915 0.605461 0.500783 0.407937 0.347541 0.297306 

respectively on the negative and positive side; the same for Pi,3 and Pi,4 (on y-axis) 
and for Pi,5 and Pi,6- More  details on this approach can be found in Ref. [19]. 

For the atoms of the first row, the core of which comes down to the K shell, we 
have found that N = 2 gives a good approximation,  while when the core is made 
up by K and L shells we can represent them separately and need N = 1 for K 
plus N = 2 for L shell. In Table 2 the values of r~, ti, H ~ and H~- for the atoms 
of the first row are shown; in Table 3 the analogous values for the atoms of the 
second row can be found. 

Table 4. Exact SCF and approximated by (8) or (11 ) formulae values of some Coulomb 
and exchange integrals 

(~[2Jck0) (~lKcl~) 
Atom ~ Exact Approx. Exact Approx. 

Na 3s 2.8933 2.8946 0.0199 0.0199 
Na 4s 2.2216 2.2229 0.0189 0.0187 
Na 3p 5.2533 5.2520 0.1062 0.1062 
Na 4p 7.4996 7.5067 0.2041 0.1190 
Si 3s 5.5267 5.5299 0.0670 0.0670 
Si 4s 4.3413 4.3443 0.0566 0.0551 
Si 3p 4.0818 4.0813 0.0274 0.0274 
Si 4p 5.1075 5.1063 0.0695 0.0638 
Ar 3s 8.5923 8.5988 0.1279 0.1279 
Ar 4s 6.6575 6.6629 0.0979 0.0952 
Ar 3p 7.6228 7.6225 0.0850 0.0849 
Ar 4p 6.3717 6.3714 0.0787 0.0735 
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4. Results 

The approximations proposed for Coulomb and exchange integrals have been 
tested in SCF pseudopotential calculations on atoms from Li to Ar and on some 
molecules, using the reduced basis sets of Huzinaga [16] or those of Kahn et al. 
[10] valence optimized. 

In all atomic cases total and orbital energies are in very.good agreement with 
those obtained from all-electron SCF calculations using a much bigger number 
of basis functions. The same agreement is also found between the values of the 
integrals (~12Jcl~o) and (r calculated by the approximating formulae 
(8) and (11) and those of exact SCFs. Some of these typical integrals are shown 

Table 5. LiH X IZ+ potential energy values a 

Al l -e lectron 6 Valence-e lectron c 
R E(R) E(R) - E(oo) E(R) - E(oo) E(R) 

cO 

10 
7 
5 
4 
3.1 
3 
2.9 
2.5 

- 7 . 9 3 1 9 2  0 0 - 0 . 6 9 4 1 9  
- 7 . 9 3 2 1 0  - 0 . 0 0 0 1 8  -0 .00013  - 0 . 6 9 4 3 2  
- 7 . 9 3 7 9 2  - 0 . 0 0 6 0 0  -0 .00593  - 0 . 7 0 0 1 2  
-7 .96511  - 0 . 0 3 3 1 9  - 0 . 0 3 3 4 2  -0 .72761  
- 7 . 9 8 8 4 8  - 0 . 0 5 6 5 6  - 0 . 0 5 6 5 8  - 0 . 7 5 0 7 7  
-8 .00241  - 0 . 0 7 0 4 9  - 0 . 0 7 0 3 9  - 0 . 7 6 4 5 8  
- 8 . 0 0 2 2 0  - 0 . 0 7 0 2 8  - 0 . 0 7 0 3 0  - 0 . 7 6 4 4 9  
-8 .00131  - 0 . 0 6 9 3 9  - 0 . 0 6 9 6 2  -0 .76381  
- 7 . 9 8 7 8 5  - 0 . 0 5 5 9 3  -0 .05881  - 0 . 7 5 3 0 0  

De 1.918 eV Exp.: 2.429 eV [22] 1.916 eV 
Re 3.081 Exp.: 3.015 [22] 3.065 
a In Tables 5 through 7 all units in a.u. when not otherwise specified. 
b Basis: Li ( l l s )  from Ref. [16]+ (5p) f rom Ref. [9]; H(4s/3s) from Ref. [23]+ l p  (a  = 0.8). 
c Basis: Li (4s, 5p) from Ref. [9]; H as (b). 

Table 6. HF X xE+ potential energy values 

Al l -e lectron a Valence-e lectron 6 
R E(R) E(R) - E(oo) E(R) - E(oo) E(R)  

- 9 9 . 9 0 0 5 4  0 0 
3.5 - 9 9 . 9 2 6 6 2  - 0 . 0 2 6 0 8  - 0 . 0 2 2 6 8  
3 - 9 9 . 9 5 5 4 8  - 0 . 0 5 4 9 4  - 0 . 0 5 1 1 7  
2.5 -100 .00213  - 0 . 1 0 1 5 9  -0 .09701  
1.9 -100 .06093  - 0 . 1 6 0 3 9  -0 .15865  
1.8 -100 .06428  - 0 . 1 6 3 7 4  - 0 . 1 6 3 3 0  
1.7 -100 .06246  - 0 . 1 6 1 9 2  -0 .16313  
1.3 - 9 9 . 9 4 0 8 6  - 0 . 0 4 0 3 2  -0 .04721  

-24 .31895  
-24 .34163  
-24.37O12 
- 2 4 . 4 1 5 9 6  
-24 .47760  
-24 .48225  
-24 .48208  
- 2 4 . 3 6 6 1 6  

D e 4.456 eV Exp.: 6.12 eV [22] 
Re 1.786 Exp.: 1.73 [22] 
a Basis: F ( l l s ,  5p) from Ref. [16]; H as (b) Table 5. 
b Basis: F (4s, 4p) from Ref. [10]; H as (a). 

4.457 eV 
1.754 
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-14 .25536  
-14 .26721  
-14 .30032  
-14 .35995  
- 1 4 . 3 8 1 9 4  
-14 .38195  
- 1 4 . 3 8 1 5 4  
- 1 4 . 3 8 0 8 8  
- 1 4 . 3 1 9 4 6  

All-electron a Valence-electron b 
R E(R) E ( R ) - R ( ~ )  E ( R ) - E ( ~ )  E(R) 

-459 .96428  0 0 
5 -459 .97412  - 0 . 0 0 9 8 4  -0 .01185  
4 -460 .00355  -0 .03927  -0 .04496  
3 -460 .06776  - 0 . 1 0 3 4 8  -0 .10459  
2.5 -460 .09248  - 0 . 1 2 8 2 0  -0 .12658  
2.49 -460 .09255  - 0 . 1 2 8 2 7  -0 .12659  
2.44 - -  - -  - 0 . 12618  
2.41 -460 .09203  -0 .12775  - 0 . 1 2 5 5 2  
2 -460 .03864  -0 .07436  - 0 . 0 6 4 1 0  

3.444 eV 
2.492 

D e 3.491 eV Exp.: 4.62 eV [22] 
Re 2.472 Exp.: 2.41 [22] 
a Basis: C1 (12s, 8p) from Ref. [21]; H as (b) Table 5. 
b Basis: C1 (3s, 3p) from Ref. [10]; H as (a). 

E ( e V )  

in Table 4. Another important characteristic required in this kind of approxima- 
tion is its transferability from atoms to molecular systems; this has been examined 
by calculating the potential curves of the LiH, HF and HCI molecules. In order 
to avoid collapse into the core we have introduced the out-of-core projection 
operator in (1) in a very similar way to the method outlined by Huzinaga [16]. 
The values obtained for the total energies and bond lengths are compared with 
those derived from all-electron calculations in Tables 5, 6 and 7 respectively; 

f 

- 1  

- 2 ~  

Fig. 3. LiH X 1X+: Comparison of the valence- 
electron-only ( i )  and all-electron MCSCF 
potential energy curves ( 4 - - )  
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Table 7. HC1 X 1E+ potential energy values 

+ E x p e r i m e n t  

, i , I 
2 4 6 

R(a .u . )  

, I , I , 
8 10 
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Fig. 4. HF X 1Z+: Comparison of the valence-electron-only 
( i )  and all-electron MCSCF potential energy curves ( - -O - - )  
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4- E x p e r i m e n t  

, I ~ I i I 
2 4 6 
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Fig. 5. HCI X 1~+. Comparison of the valence-electron- 
only ( i )  and all-electron MCSCF potential energy curves 
(--o--) 

the relative plots are shown in Figs. 3, 4 and 5. The nearly perfect coincidence 
attained is evident, especially if one takes into account that a slight worsening 
in the representation is inevitable when the basis set is reduced so drastically. 

5. Conclusions 

The matrix elements between valence functions and Coulomb and exchange 
operators can be obtained by the approximating formulae (8) and (11), with a 
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very good degree of precision and  a m i n i m u m  computa t iona l  effort. W h e n  using 

pseudopotent ia ls  in molecular  calculations the ma in  difficulties arise f rom a poor  

eva lua t ion  of the core-valence  interact ion,  and  more  a t t en t ion  will have to be 
paid to this aspect of the problem.  As far as the approximat ion  of the C o u l o m b  
and exchange matrix e lements  are concerned,  the results ob ta ined  encourage  us 
to extend the me thod  to the next  rows of the periodic table and  to use it for 
some more  complicated molecular  systems. 
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